# Исследование интегральных спектров четырех шаровых скоплений М31.

# Маричева М.И., Шарина М.Е. (САО РАН)

Представлены результаты определения металличности, возраста, удельного содержания гелия (Y) и содержаний элементов C, N, Mg, Ca, Mn, Ti, Cr для четырех шаровых скоплений галактики M31: Bol6, Bol20, Bol45 и Bol50. Спектры исследуемых скоплений были получены на 6-м телескопе БТА Российской академии наук в 2020 году с помощью фокального редуктора первичного фокуса SCORPIO-1 (Afanasiev et al. 2005) в режиме спектроскопии с длинной щелью (гризма VPHG1200B, спектральный диапазон 3600-5400 Å, разрешение ~ 5.5 Å, ширина щели 1"). Использовалась методика из статьи Sharina et al. (2020). В рамках метода проводится сравнение наблюдаемых спектров скоплений с синтетическими, рассчитываемыми на основе плоскопараллельных гидростатических моделей атмосфер (Castelli & Kurucz (2003). Параметры атмосферы задаются теоретической изохроной звездной эволюции. Звезды складываются в суммарный спектр согласно заданной функции масс. Все исследуемые скопления оказались старше 10 млрд. лет. Полученные нами значения металичности [Fe/H] находятся в диапазоне от -0.75 до -1.1 dex. Выполнено сравнение полученных содержаний с таковыми у шаровых скоплений и звезд Галактики и М31 при металличности [Fe/H]~ -1 dex. Для всех объектов подобраны аналоги по металличности, возрасту и Y. Проведено сравнение полученных спектров Bol6, Bol20, Bol45 и Bol50 с интегральными спектрами шаровых скоплений Галактики из Schiavon et al. (2005). Для всех 4 скоплений в литературе имеются данные металличности и возраста, оцененные фотометрическими методами и по спектрам умеренного разрешения в основном методом Ликских индексов. Наши результаты неплохо согласуются с литературными. Для Bol45, Bol6 в литературе имеются содержания химических элементов, полученные методом спектроскопии высокого разрешения Sakari et al. (2016) и Colucci et al. (2014). Сравнение с нашими результатами показывает удовлетворительное согласие. Впервые для скоплений выборки получены значения удельного содержания гелия, а также химсостав для скоплений Bol20 и Bol50.

## Таблица 1. Основные характеристики исследуемых скоплений

(1) идентификаторы из Galleti et al.(2004); (2) прямые восхождения и склонения; (3) видимые звездные величины в фильтре V фотометрической системы Джогсона-Казинса; (4) избытки цвета E(B-V) в зв.вел.; (5) лучевые скорости в км/с; (б) проекционные расстояния от центра М31 в кпс; (7) радиусы на половине светимости в пс.

| Имя                                                                | RA      | DEC (2000)       | V       | E(B-V) <sup>a</sup> | Vel      | R <sub>M31</sub> <sup>b</sup> | R <sub>h</sub> <sup>c</sup> |
|--------------------------------------------------------------------|---------|------------------|---------|---------------------|----------|-------------------------------|-----------------------------|
|                                                                    | hh:m    | m:ss gr:mm:ss    | зв.вел. | зв.вел.             | км/с     | кпс                           | пс                          |
| Bol6                                                               | 00:40:2 | 6.47 +41:27:26.6 | 15.97   | 0.17                | -232.4±6 | 6.3                           | 1.86                        |
| Bol20                                                              | 00:40:5 | 5.26 +41:41:25.3 | 16.13   | 0.11                | -345.4±5 | 7.3                           | 3.17                        |
| Bol45                                                              | 00:41:4 | 3.11 +41:34:20.1 | 15.14   | 0.18                | -419.4±6 | 4.8                           | 2.85                        |
| Bol50                                                              | 00:41:4 | 6.27 +41:32:18.4 | 16.79   | 0.25                | -109.5±6 | 4.4                           |                             |
| a Caldwall at al 2011: h Caldwall at al 2016: a Parmby at al. 2007 |         |                  |         |                     |          |                               |                             |

a- Caldwell et al.2011; b-Caldwell et al.2016; c-Barmby et al. 2007

# Анализ спектров скоплений методом из Sharina et al. (2020)

0.6

4060 4080 4100 4120

Для построения синтетических спектров в данной работе использовались изохроны Bertelli et al. (2008) и Pietrinferni et al. (2004) (далее: B08 и P04). При изменении металличности, возраста и Ү, глубина ядер и крыльев каждой из водородных линий изменяются по-разному из-за различного вклада звезд разной светимости и спектральных классов. Увеличение содержания гелия приводит к возрастанию глубины водородных линий в области ядра. С уменьшением возраста точка поворота Главной последовательности смещается в сторону более высоких температур. В результате, все воородны линии синхронно усиливаются в ядре и крыльях.





Hγ

4320 4350

Wavelength, Å

4290 4320 4350

Wavelength, Å

Bepx - B08:Z=0.004,Y=0.30,logAge=10.05;

Низ - P04: Z=0.004, Y=0.25, Age=14Gyr

4290

Hβ

4830 4860 4890

Bol45=

Bol50

z001y26a10.05

Bol45 Bol50

z002v26a10.5

4830 4860 4890

Hβ

# Сравнение химсостава исследуемых скоплений с химсоставом шаровых скоплений Галактики и М31 с такой же металличностью



Рисунки 1а-с. Сравнение наблюдаемого спектра скопления (розовая линия) с модельными в области водородных линий. Верхняя панель – сравнение с моделью, построенной с использованием изохроны В08.Нижняя панель – изохроны Р04.



## Таблица 2. Сравнение результатов анализа спектров с литературными данными

В таблице 2 подведен итог настоящего исследования интегральных спектров 4 скоплений в M31 и выполнено сравнение с литературными данными. Полученные содержания элементов, [Fe/H] и возраст для всех 4х скоплений близки к литературным оценкам. Воl6, Воl45 показывают более высокое содержание [C/Fe] по сравнению с данными S16, полученными в инфракрасном диапазоне. Различия могут быть вызваны тем, что спектральный диапазон в инфракрасной полосе Н, использованный этими авторами, чувствителен в основном только к излучению звезд вершины ветви красных гигантов, для которых характерны пониженные [C/Fe] из-за измерения химсостава в процессе эволюции звезд (см., например, Sharina & Shimansky (2020) и ссылки в этой статье). Отличия в [Mg/Fe] и [Ca/Fe] между полученными и литературными исследованиями интегральных спектров в оптическом диапазоне можно объяснить различиями в применяемых методиках у разных авторов и, возможно, недостаточным S/N в спектрах высокого разрешения.

| Объект                                                                                                                                                                                                                                                                                                                |               |                   | Bol6              |               |              |               | Bol               | 45            |              | Bo            | 150          | Bol           | 20           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-------------------|---------------|--------------|---------------|-------------------|---------------|--------------|---------------|--------------|---------------|--------------|
| Ref                                                                                                                                                                                                                                                                                                                   | Ours          | S16 <sub>IR</sub> | S16 <sub>op</sub> | C14           | C111         | Ours          | S16 <sub>IR</sub> | C14           | C111         | Ours          | C111         | Ours          | Cl11         |
| Аде<br>(млрд.лет)                                                                                                                                                                                                                                                                                                     | 11.2<br>±1    |                   |                   | 12.5<br>±2.5  |              | 11<br>±1      |                   | 12.5<br>±2.5  |              | 11<br>±1      | 13.5<br>±2   | 13<br>±1      | 7.9<br>±2    |
| Y                                                                                                                                                                                                                                                                                                                     | 0.3           |                   |                   |               |              | 0.26          |                   |               |              | 0.26          |              | 0.26          |              |
| [Fe/H]<br>(dex)                                                                                                                                                                                                                                                                                                       | -0.75<br>±0.1 | -0.69<br>±0.05    | -0.73<br>±0.02    | -0.73<br>±0.1 | -0.5<br>±0.1 | -1.1<br>±0.1  | -0.88<br>±0.07    | -0.94<br>±0.1 | -0.9<br>±0.1 | -1.1<br>±0.1  | -0.8<br>±0.1 | -1.0<br>±0.1  | -0.9<br>±0.1 |
| [C/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                       | 0.1<br>±0.15  | -0.32<br>±0.05    |                   |               |              | 0.26<br>±0.15 | -0.41<br>±0.07    |               |              | 0.26<br>±0.15 |              | 0.1<br>±0.15  |              |
| [N/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                       | 1.45<br>±0.2  | 1.35<br>±0.04     |                   |               |              | 0.7<br>±0.2   | 0.9<br>±0.1       |               |              | 0.7<br>±0.2   |              | 1.35<br>±0.2  |              |
| [O/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                       | 0.3           | 0.32<br>±0.04     |                   |               |              | 0.3           | 0.33<br>±0.12     |               |              | 0.3           |              | 0.3           |              |
| [Mg/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                      | 0.55<br>±0.1  | 0.43<br>±0.05     | 0.46<br>±0.1      | 0.34<br>±0.03 |              | 0.6<br>±0.1   | 0.22<br>±0.15     | 0.04<br>±0.15 |              | 0.6<br>±0.1   |              | 0.5<br>±0.1   |              |
| [Ca/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                      | 0.48<br>±0.1  | 0.31<br>±0.07     | 0.26<br>±0.02     | 0.25<br>±0.05 |              | 0.45<br>±0.2  | 0.2<br>±0.13      | 0.22<br>±0.04 |              | 0.45<br>±0.2  |              | 0.45<br>±0.1  |              |
| [Mn/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                      | -0.5<br>±0.2  |                   |                   |               |              | -0.4<br>±0.2  |                   |               |              | -0.4<br>±0.2  |              | -0.55<br>±0.2 |              |
| [Ti/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                      | 0.15<br>±0.2  | 0.43<br>±0.07     | 0.17<br>±0.05     | 0.2<br>±0.05  |              | 0.2<br>±0.2   | 0.27<br>±0.14     | 0.16<br>±0.06 |              | 0.2<br>±0.2   |              | 0.2<br>±0.2   |              |
| [Cr/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                      | 0.0<br>±0.2   |                   |                   |               |              | -0.05<br>±0.2 |                   |               |              | -0.05<br>±0.2 |              | 0.05<br>±0.2  |              |
| [α/Fe]<br>(dex)                                                                                                                                                                                                                                                                                                       | 0.44<br>±0.25 | 0.37              | 0.3               | 0.3           |              | 0.45<br>±0.25 | 0.3               | 0.29          |              | 0.45<br>±0.25 |              | 0.41<br>±0.25 |              |
| Ours – значения, полученные в данной работе.       C14 – Colucci et al. (2014) по спектрам высокого разрешения в ик-диапазоне.         S16IR – Sakari et al. (2016) по спектрам высокого разрешения в оптическом диапазоне.       C14 – Colucci et al. (2014) по спектрам высокого разрешения в оптическом диапазоне. |               |                   |                   |               |              |               |                   |               |              |               |              |               |              |

более низким содержанием гелия у NGC6637.

# Сравнение химсостава исследуемых скоплений с химсоставом звезд поля Галактики и МЗ1



На рисунках 4a-b черными точками нанесены содержания звезд поля Галактики из Vann et al.(2004), крупными кругами содержания для исследуемых скоплений М31.

Полученные содержания (см. табл.2, рис.2а-с) соответствуют таковым в моделях химической эволюции Галактики под воздействием сверхновых типа II (SNeII) и гиперновых (Kobayashi et al. (2006), см. их рис. 32) в диапазоне по металличности [Fe/H]= -1.1..-0.75 dex.

Четыре исследованных скопления расположены на расстоянии от центра M31 в проекции на небо: 4.4<R<sub>M31</sub><7.3 кпс. Их металличность ниже, чем средняя металличность красных гигантов гало М31 на данном расстоянии от центра M31 (Gilbert et al. (2020) и ссылки в этой статье). Среднее содержание альфа-элементов у звезд внутреннего гало M31 ([ $\alpha$ /Fe] = 0.45±0.09 dex) выше, чем у звезд внешнего гало ([ $\alpha$ /Fe] = 0.3±0.16 dex). Полученные значения [α/Fe] у четырех объектов соответствуют среднему значению [α/Fe] звезд внутреннего гало на данном расстоянии от центра М31.

### Литература:

| итература:                                                       | K M Gilbert I Woino E N Kirby et al AI 160 41 (2020)                                                                                                                                                                 |  |  |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).    | C Kobayashi H Umeda K Nomoto et al ApI 653 $1145$ (2006)                                                                                                                                                             |  |  |  |  |  |
| I. Asplund, N. Grevesse, A. J. Sauval and P. Scott,              | A Pietrinferni S Cassisi M Salaris and F Castelli AnI 612 168 (2004)                                                                                                                                                 |  |  |  |  |  |
| RAA 47, 481 (2009).                                              | C M Sakari and G Wallerstein MNRAS 456 831 (2016)                                                                                                                                                                    |  |  |  |  |  |
| Barmby, D. E. McLaughlin, W. E. Harris, et al.,                  | R P Schiavon I A Rose S Courteau and L A MacArthur                                                                                                                                                                   |  |  |  |  |  |
| AJ. 133, 2764 (2007).                                            | <ul> <li>ApJS 160(1), 163 (2005).</li> <li>M. E. Sharina, V. V. Shimansky and N. N. Shimanskaya,</li> <li>Astrophys. Bull. 75, 247 (2020).</li> <li>M. E. Sharina, V. V. Shimansky and D. A. Khamidullina</li> </ul> |  |  |  |  |  |
| B. Bertelli, L. Girardi, P. Marigo and E. Nasi,                  |                                                                                                                                                                                                                      |  |  |  |  |  |
| A&A 484, 815(2008).                                              |                                                                                                                                                                                                                      |  |  |  |  |  |
| . Caldwell, R. Schiavon, H. Morrison, et al., AJ 141, 61 (2011). |                                                                                                                                                                                                                      |  |  |  |  |  |
| . Caldwell and A. J. Romanowsky, ApJ 824, 42 (2016).             | Astrophys. Bull. 73, 318 (2018).                                                                                                                                                                                     |  |  |  |  |  |
| . Castelli and R. L. Kurucz, IAU Symp. 210, A20(2003).           | M E. Sharina and VV Shimansky Proceedings of the All-Russian                                                                                                                                                         |  |  |  |  |  |
| E. Colucci, R. A. Bernstein and J. G. Cohen,                     | Conference "Ground-Based Astronomy in Russia, 21st Century", Special                                                                                                                                                 |  |  |  |  |  |
| pJ. 797, 116 (2014).                                             | Astrophysical Observatory of RAS Eds: LL Romanyuk I A Yakunin A F                                                                                                                                                    |  |  |  |  |  |
| . Galleti, L. Federici, M. Bellazzini, et al.,                   | Valeev D I Kudrvavtsev 267 (2020)                                                                                                                                                                                    |  |  |  |  |  |
| A&A 416, 917 (2004).                                             | K A Vann M Irwin M D Shetrone et al AI 128(3) 1177 (2004)                                                                                                                                                            |  |  |  |  |  |
|                                                                  |                                                                                                                                                                                                                      |  |  |  |  |  |

#### Примечания:

<sup>1</sup> Массовые доли водорода X, гелия Y, и металлов Z для Солнца даны в статье Asplund et al. (2009). X+Y+Z=1.

<sup>2</sup> Содержание железа в солнечных единицах [Fe/H]=log( $N_{Fe}/N_{H}$ ) – log( $N_{Fe}/N_{H}$ )(где  $N_{Fe}/N_{H}$  – отношение концентраций железа и водорода по числу атомов, или по массе).

<sup>3</sup>Содержание элементов альфа-процесса в таблице было вычислено как среднее значения содержаний элементов Mg, Ca и O. В статьях Sakariet al. (2016)(S16) и Colucci et al. (2014)(C14) [α/Fe] вычислено как среднее содержаний элементов Ca, Si и Ti.