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ABSTRACT
A neutron star (NS) can start oscillating as a result of an internal instability or external perturbation. By confronting various observational manifestations of such oscillations with the theoretical models one can constrain the

properties of the superdense stellar matter. Whether an oscillation mode can actually be excited or not depends on the interplay between the excitation rate and on how e�ciently dissipative mechanisms in the stellar matter

counteract this excitation. Generally, at temperatures T ≲ 5 × 108 K, it is the shear viscosity, that appears to be the strongest one, and other mechanisms (e.g., thermal conductivity and bulk viscosity) can be ignored.

At the same time, although the chemical composition of the stellar matter is rather complex and includes di�erent particle species (neutrons, electrons, protons, muons, possibly hyperons and quarks), the e�ect of particle

di�usion on NS oscillations, as far as we know, has not yet been investigated. Here we take a �rst look into the role of the di�usion as a dissipative agent that can damp NS oscillations. As we demonstrate, in superconducting

matter di�usion becomes the leading dissipative mechanism that strongly accelerates the dissipation of various oscillation modes and thus makes questionable our current vision of a number of aspects of NS life.

Oscillation damping times

Let us consider a small periodic perturbation with frequency ω, propagating in the equi-

librium stellar matter. Let E be the mechanical energy of the perturbation, and Ė be the

averaged over the period of the oscillation energy loss rate, associated with any dissipative

mechanism under consideration. One of the ways to estimate the e�ect of this mechanism

on the dynamics of the perturbation is to calculate the corresponding damping time [1]

τ = −2E

Ė
. (1)

Below in order to estimate the role of di�usion as a dissipative mechanism we compare the

damping time τdiff due to di�usion with the damping time τη due to shear viscosity for a

number of di�erent neutron star oscillation modes. To compute the energy loss rate due

to shear viscosity Ėη we employ the explicit formulas from Landau & Lifshitz [1]. The

calculation of the energy loss rate due to di�usion Ėdiff will be discussed below.

Stellar matter
Here we consider the unmagnetized degenerate stellar matter, consisting of neutrons (n),
protons (p), electrons (e) and muons (µ). Neutrons and protons in neutron star interiors

can be in super�uid/superconducting state [2]. For simplicity we treat neutrons in our

study as normal, since, according to microscopic calculations [3], the maximum critical

temperature Tcn of neutron super�uidity onset is substantially lower than the proton one,

Tcp. For protons we consider two possibilities of either being normal (normal matter) or

strongly superconducting (superconducting matter, where all protons form Cooper pairs).

Each particle species α = n, p, e or µ is characterized by the electric charge eα, number
density nα and relativistic chemical potential µα. In normal matter they have individual

velocities vvvα, while in superconducting matter protons are divided into Bogoliubov thermal

excitations with velocity vvvp and density np ex, and superconducting protons with velocity

vvvsp and density (np− np ex). In strongly superconducting matter np ex = 0 and only one

proton-associated velocity �eld vvvsp is left.
For simplicity we show only the equations for the npe-matter, but analogous calcula-

tions can be performed for npeµ-matter. In npe-matter thanks to the electromagnetic

interaction protons and electrons move together, so that, to a very high precision, their

number densities and currents coincide [4]:

ne = np, nevvve = np exvvvp + (np − np ex)vvvsp. (2)

An unperturbed matter is supposed to be in β-equilibrium, δµ0 ≡ µn0 − µp0 − µe0 = 0
(hereafter index �0� refers to the unperturbed quantities). Beta-processes are too slow [5]

to a�ect oscillations in su�ciently cold matter and will be neglected in what follows.

Oscillation equations in homogeneous matter

Here we discuss the oscillation equations for two scenarios, the �rst of normal matter

and the second of strongly superconducting matter, suitable for not too young NSs. For

simplicity we discuss only the equations in the homogeneous matter, but analogous calcu-

lations can be performed for the global neutron star oscillation modes.

In the hydrodynamic limit, relevant in neutron stars, the system of equations describing

small oscillations in homogeneous degenerate unmagnetized matter consists of the number

density conservation laws

∂nα

∂t
+ nα0div vvvα = 0 (3)

and multi�uid hydrodynamic equations, accounting for particle di�usion. According to

[4] the friction force between the species α and β can be written as Jαβwwwαβ, where

wwwαβ ≡ vvvα − vvvβ and Jαβ are the corresponding relative velocity and momentum transfer

rate, respectively. Then the dynamics of oscillations in the homogeneous normal matter

is governed by the following linearized Euler-like equations [4, 6]:

nα0µα0

c2
∂vvvα
∂t

= eαnα0EEE − nα0∇∇∇µα −
∑
β

Jαβwwwαβ, (4)

where EEE is the electric �eld and c the speed of light. In the case of strongly supercon-

ducting matter Eq. (4) for protons should be replaced with the Josephson equation for the

superconducting proton component [7]

µp0

c2
∂vvvsp
∂t

= epEEE −∇∇∇µp. (5)

The hydrodynamic limit corresponds to large values of Jαβ such that wαβ is much smaller

than a typical hydrodynamic velocity v. Thus, in what follows wαβ can be set to zero

unless it is multiplied by Jαβ.

The e�ect of di�usion
The energy leakage due to di�usion equals the work done by the friction force per unit

time and can be written as an integral over the stellar volume V [4, 8]

Ėdi� = −1

2

∫ ∑
αβ

Jαβw
2
αβ dV. (6)

Relative velocities in this equality depend on the e�ciency of particle collisions (more ef-

fective collisions correspond to smaller relative velocities) and should be expressed through

other variables describing the perturbation.

In the case of normal matter we sum up Eq.(4) divided by nα0 for protons and electrons

and subtracting Eq.(4) for neutrons divided by nn0, we, using Eq. (2) , the fact that

wαβ ≈ 0 (unless multiplied by Jαβ) and the β-equilibrium condition δµ0 = 0, arrive at
the equation

∇∇∇δµ = −
[
Jnp
np0

+
Jen
ne0

+
Jnp + Jen

nn0

]
wwwnp. (7)

This allows us to express the relative velocities through δµ and transform the energy loss

rate due to di�usion in normal matter (6) into

Ėdi� ≈ −
∫

1

Jnp

[
nn0ne0

nb0
∇∇∇δµ

]2
dV, (8)

where nb = nn + np is the baryon number density. Here we neglected Jen compared to

Jnp, since in normal matter collisions between protons and neutrons are extremely e�cient

due to strong interactions and Jnp/Jen ∼ 105 [6].
In superconducting matter only thermal excitations can scatter from other particle

species [9]. Since in strongly superconducting matter np ex = 0, scattering processes

involving protons are suppressed, so that the proton-related momentum transfer rates

tend to zero, Jpα = 0. In these conditions Eq. (6) reduces to

Ėdi� = −
∫

1

Jen

[
nn0ne0

nb0
∇∇∇δµ

]2
dV. (9)

To derive (9) we make use of Eq. (2) with np ex = 0, Eq. (4) for neutrons and electrons,

Eq. (5), and the equality δµ0 = 0.
When dissipation is weak, the imbalance δµ in Eqs.(8) and (9) can be calculated using

the equations of nondissipative hydrodynamics, which are the same in normal and strongly

superconducting matter. Then Eqs. (8) and (9) imply that dissipation in strongly super-

conducting matter is by a factor of∼ Jnp/Jen ∼ 105 more e�cient than in normal matter.

It can be shown that Eqs. (8) and (9) are equally applicable to the inhomogeneous npe-
matter of Newtonian stars. Similar equations valid in General Relativity (GR) can be

derived within the framework of relativistic multi-�uid dissipative hydrodynamics devel-

oped in [6, 10].

Microphysical input

In all numerical calculations we employ the BSk24 equation of state [11], allowing for

muons, and adopt shear viscosity coe�cients and momentum transfer rates from [12] and

[6]. In the case of superconducting matter we neglect the e�ect of proton superconductivity

on Jen. We assume that protons in superconducting matter are strongly superconducting,

while neutrons are normal. To calculate global stellar oscillation modes we consider a

three-layer NS consisting of the barotropic crust, npe outer core, and npeµ inner core.

We employ the NS model with the mass M = 1.4M⊙ and redshifted internal stellar

temperature T∞ = 108K.

Results: sound waves
In order to �nd τdiff we note, that in degenerate npe-matter the chemical imbalance δµ
depends only on the number densities nn, np, and ne. For sound waves in nondissipative

medium the hydrodynamic velocity v = v0 cos(kx − ωt) and number density perturba-

tions δnα = δnα0 cos(kx − ωt), where k is the wave number, are because of number

density conservation laws related as δnα = nα0kv/ω. Therefore, we have

δµ =
∑
α

∂δµ

∂nα
δnα =

∑
α

∂δµ

∂nα

nα0vk

ω
. (10)

Using that for sound waves the oscillation energy per unit volume is

E =
∑
α

µα0nα0v
2
0

2c2
, (11)

we �nd

τdiff = J 2ω2

k4

(
nb0

nn0ne0

)2
(∑

α

∂δµ

∂nα
nα0

)−2∑
α

µα0nα0

c2
, (12)

where J = Jnp in normal matter and J = Jen in superconducting matter. In order to

proceed to higher densities we generalize the results derived above to the case of npeµ-
matter. The ratio τdiff/τη is plotted in Fig. 1 as a function of baryon number density nb

for normal (dashed line) and strongly superconducting (T ≪ Tcp, solid line) matter.

Figure 1: The ratio τdiff/τη versus nb for sound waves in normal (dashed lines; temperature-dependent)

and superconducting (solid line; almost temperature-independent) matter. Vertical dots denote the muon

onset density.

In normal npe-matter particles are locked to each other: neutrons are locked to protons

due to frequent collisions caused by strong interaction, while electrons are locked to protons

by electromagnetic interaction. As a result, di�usion is ine�cient. Appearance of muons

allows charged particles to move with respect to each other, and the e�ciency of di�usion

increases strongly. However, our results imply that, anyway, di�usion is less e�ective in

normal matter in the whole range of densities than the shear viscosity. At the same time,

in superconducting matter neutrons are free to move with respect to protons and it is the

di�usion, that becomes the dominant channel of energy losses.

Results: f -, p-, and g-modes

The recently developed in [6, 10] formalism serves a relativistic generalization of the dis-

cussed above dissipative hydrodynamic equations accounting for particle di�usion, that

is written in more convenient and easier-to-operate-with terms. Using this formalism, we

calculate the damping times of relativistic f -, p-, and g-modes for an NS in the Cowling

approximation (e.g., [13]). The oscillation eigenfunctions and eigenfrequencies in the ab-

sence of dissipation are calculated with our codes developed in [14]. Damping times versus

eigenfrequency σ ≡ ω/(2π) for the �rst (l = 2, m = 0) eigenmodes are shown in Fig.

2. Upper points represent dissipation due to shear viscosity, τη, while lower points show
di�usion damping times, τdiff.

Figure 2: Damping times for the �rst (l = 2, m = 0) f -, p-, and g-modes in superconducting NS due to

shear viscosity (upper red points) and di�usion (lower black points) versus the mode eigenfrequency.

For p-modes τη exceeds τdiff by approximately two orders of magnitude, just like for sound

waves. This is not surprising, since p-modes, being mainly restored by the pressure, are

their close relatives. For g-modes, mainly restored by buoyancy, the di�erence between τη
and τdiff is even larger � almost four orders of magnitude. Finally, the e�ciency of di�u-

sion for the f -mode is strongly suppressed, since this mode is almost incompressible and

chemical potential imbalances are practically not perturbed in the course of oscillations.

Results: r-modes
Rotating stars possess a special class of predominantly toroidal oscillations, restored

mainly by the Coriolis force � r-modes. On one hand, these oscillations are unstable

due to gravitational radiation [15, 16], but, on the other hand, they are damped by dis-

sipative mechanisms, operating in the stellar matter. The instability window [17], that

is the region on the ν − T∞ plane (ν is the NS rotation frequency), where dissipation

cannot counteract the r-mode growth, is populated by numerous sources [19] despite the

theoretical predictions of the opposite [18]. Revealing some not yet identi�ed strong dis-

sipative mechanism could reconcile theory and observations. Here we examine, whether

di�usion could serve as such a mechanism or not.

We calculate damping times for the most unstable l = m = 2 Newtonian r-mode

in the Cowling approximation. In our calculations we assume that ν is small compared

to the Kepler frequency, νK, and expand all the perturbations in the parameter ν/νK.
Fig. 3 shows the resulting instability curves (boundaries of the instability window), where

the r-mode excitation is balanced by the shear viscosity only (dashed line) and by the

combined action of shear viscosity and di�usion (thick solid line). Above the curves the

r-mode is unstable.

Figure 3: Instability curves for l = m = 2 r-mode in superconducting (but nonsuper�uid) NS. We

extend the temperature range to extremely low values to illustrate the behaviour of the curves at large ν.

Note that for the r-mode σ ∝ ν, while perturbations of thermodynamic quantities, in

particular chemical potentials, are suppressed by a factor of ν2/ν2K. As a result, 1/τdiff
turns out to be ∝ ν2 [see Eq. (9)], while 1/τη does not depend on ν. Thus, while at high
ν di�usion is as e�ective as shear viscosity at lower ν di�usion is negligible. Consequently,

in the Newtonian framework the e�ect of di�usion on the instability curve is smaller at

higher T∞, since the curve ν(T∞) in Fig. 3 is a decreasing function of temperature.

Note, however, that in GR perturbations of chemical potentials are ∝ ν/νK [20, 21],

hence 1/τdiff does not scale with ν. To get an impression of how e�cient di�usion in GR

may be, we assumed that Newtonian approach and GR give similar results for τdiff at

ν = νK (since chemical potential perturbations are not suppressed at ν = νK). While

the expansion parameter ν/νK is not small at ν = νK, we can still formally solve the

expanded oscillation equations at ν = νK and rescale the result to smaller ν. Then we

calculate τdiff at ν = νK in the Newtonian framework and assume that in GR τdiff equals

this value at any ν. The resulting GR instability curve due to di�usion and shear viscosity

is shown by thin solid line and noticeably di�ers from the thick one. We emphasize that

this is only an estimate, an accurate calculation will be published elsewhere.

Conclusion
We propose that particle di�usion can be a very e�cient dissipative mechanism in NSs.

We compare damping of sound waves, as well as of f -, p-, g-, and r-modes due to di�usion

and shear viscosity in NSs composed of neutrons, protons, and leptons. We �nd that, when

protons are normal, the e�ect of di�usion on stellar oscillations is relatively small and can

be ignored for all modes except for g-modes. In contrast, for superconducting protons

di�usion leads to the very fast damping of oscillations, especially in the case of sound

waves, p- and g- modes, leaving shear viscosity (which is believed to be the key dissipative

mechanism) far behind. Our results imply that damping times of all oscillation modes

should be revisited. Every physical phenomenon, dealing with the development of one or

another hydrodynamic instability has to be reconsidered in order to check whether these

instabilities can survive in the presence of the discussed here powerful di�usion dissipation.

We therefore conclude that di�usion may have an important e�ect on the interpretation

of gravitational signal produced in binary NS late inspirals, glitches, as well as on the

interpretation of observational properties of rapidly rotating NSs.
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