Фракционирование дейтерия в холодных плотных ядрах в маломассивной области звездообразования L1688

Петрашкевич И.В.¹, Пунанова А.Ф.¹

¹Научная лаборатория астрохимических исследований Уральского федерального университета

При поддержке РНФ 19-72-00064 и FEUZ-2020-0038

Введение

Дозвездные ядра - холодные (10 К), плотные $(10^4 - 10^7 \text{ см}^{-3})$ сгустки в молекулярных облаках, нулевая стадия звездообразования. К центру ядра становятся плотнее и холоднее, эти условия способствуют увеличению доли дейтерия в водородсодержащих соединениях. Доля дейтерия — важный инструмент для изучения дозвездной фазы. Её измеряют как отношение лучевых концентраций дейтерированных и водородосодержащих изотопологов (Crapsi и др. 2005 год).

При уменьшении температуры и увеличении плотности кислородсодержащие и углеродсодержащие молекулы оседают на пыль, а азотсодержащих соединений всё ещё много в газе. Поэтому азотсодержащие соединения используют как трейсеры плотного газа, центра холодного плотного ядра. Углеродсодержащие соединения становятся трейсерами менее плотного газа, оболочки ядра.

Наблюдательные данные

Для исследования были выбраны четыре холодных плотных ядра Oph-C-N, Oph-F, Oph-E-MM2 и Oph-H-MM1 из области L1688 (см.

Лучевая концентрация и доля дейтерия в ядре и оболочке

Используя карты параметров спектров, построили карты лучевых концентраций в предположении локального термодинамического равновесия. Карты лучевой концентрации для Oph-E-MM2:

2021

Уральский

федеральный

имени первого Президента

университет

сии Б.Н.Ельцина

Доля дейтерия в азотсодержащих соединениях составила ≈ 0.5, а в

ниже).

Карты линий $N_2H^+(1-0)$, $N_2D^+(1-0)$, $N_2D^+(2-1)$, $NH_2D(1,1)$, $H^{13}CO(1-0)$, $H^{13}CO^+(2-1)$, $DCO^+(1-0)$ и $DCO^+(2-1)$ получены на телескопе IRAM 30m методом on-the-fly. Из работы Frisen et al. 2017 года были взяты наблюдения аммиака $NH_3(1,1)$ и $NH_3(2,2)$.

Приближения спектров строили в python.pyspeckit. Методом Монте-Карло определяли наиболее вероятную температуру возбуждения перехода в ядре и использовали ее, чтобы более точно оценить оптическую толщину линии в каждой точке карты. углеродсодержащих составила ≈ 0.05 . Это соответствует модельным предсказаниям, доля дейтерия ядра выше чем в оболочке и увеличивается к центру (Kong et al. 2015) как видно на картах доли дейтерия Oph-E-MM2 и Oph-C-N:

Доля дейтерия и физические параметры ядра

Мы исследовали корреляцию доли дейтерия с физическими параметрами газа, для этого были взяты карты дисперсии скорости, температуры газа (Frisen et al. 2017), температуры пыли и лучевой концентрации молекулярного водорода (Ladjelate et al. 2020). Мы нашли значимые корреляции доли дейтерия с температурой пыли и лучевой концентрацией молекулярного водорода. Доля дейтерия уменьшается с температурой пыли и увеличивается с лучевой концентрации молекулярного водорода. Полученный результат согласуется с модельными предсказаниями (Kong et al. 2015). Однако, мы не нашли значимой корреляции с дисперсией скорости и температурой газа.

Часть представленных результатов опубликована в статье Petrashkevich et al.

Выше показан пример спектра перехода $N_2H^+(1-0)$ для ядра Oph-C-N (черным) и приближение спектра (красным). В верхнем левом углу показаны параметры приближения спектра и их ошибки.

Punanova et al. 2016; Bergin & Tafalla et al. 2007; L. Pagani et al. 2009; T. L. Wilson et al. 1994; Di Francesco et al. 2008; Ladjelate et al. 2020; Frisen et al. 2017; Kong et al. 2015; Petrashkevich et al. 2020.